什么是接口?
在面向对象的领域里,接口一般这样定义:接口定义一个对象的行为。接口只指定了对象应该做什么,至于如何实现这个行为(即实现细节),则由对象本身去确定。
在 Go 语言中,接口就是方法签名(Method Signature)的集合。当一个类型定义了接口中的所有方法,我们称它实现了该接口。这与面向对象编程(OOP)的说法很类似。接口指定了一个类型应该具有的方法,并由该类型决定如何实现这些方法。
例如,WashingMachine 是一个含有 Cleaning() 和 Drying() 两个方法的接口。任何定义了 Cleaning() 和 Drying() 的类型,都称它实现了 WashingMachine 接口。
接口的声明与实现
让我们编写代码,创建一个接口并且实现它。
1 | package main |
上面程序的第 7 行声明了一个 SalaryCalculator 接口类型,它只有一个方法 CalculateSalary() int。
在公司里,我们有两类员工,即第 11 行和第 17 行定义的结构体:Permanent 和 Contract。长期员工(Permanent)的薪资是 basicpay 与 pf 相加之和,而合同员工(Contract)只有基本工资 basicpay。在第 23 行和第 28 行中,方法 CalculateSalary 分别实现了以上关系。由于 Permanent 和 Contract 都声明了该方法,因此它们都实现了 SalaryCalculator 接口。
第 36 行声明的 totalExpense 方法体现出了接口的妙用。该方法接收一个 SalaryCalculator 接口的切片([]SalaryCalculator)作为参数。在第 49 行,我们向 totalExpense 方法传递了一个包含 Permanent 和 Contact 类型的切片。在第 39 行中,通过调用不同类型对应的 CalculateSalary 方法,totalExpense 可以计算得到支出。
这样做最大的优点是:totalExpense 可以扩展新的员工类型,而不需要修改任何代码。假如公司增加了一种新的员工类型 Freelancer,它有着不同的薪资结构。Freelancer只需传递到 totalExpense 的切片参数中,无需 totalExpense 方法本身进行修改。只要 Freelancer 也实现了 SalaryCalculator 接口,totalExpense 就能够实现其功能。
该程序输出 Total Expense Per Month $14050。
接口的内部表示
我们可以把接口看作内部的一个元组 (type, value)。 type 是接口底层的具体类型(Concrete Type),而 value 是具体类型的值。
我们编写一个程序来更好地理解它。
1 | package main |
Test 接口只有一个方法 Tester(),而 MyFloat 类型实现了该接口。在第 24 行,我们把变量 f(MyFloat 类型)赋值给了 t(Test 类型)。现在 t 的具体类型为 MyFloat,而 t 的值为 89.7。第 17 行的 describe 函数打印出了接口的具体类型和值。该程序输出:1
2Interface type main.MyFloat value 89.7
89.7
空接口
没有包含方法的接口称为空接口。空接口表示为 interface{}。由于空接口没有方法,因此所有类型都实现了空接口。
1 | package main |
在上面的程序的第 7 行,describe(i interface{}) 函数接收空接口作为参数,因此,可以给这个函数传递任何类型。
在第 13 行、第 15 行和第 21 行,我们分别给 describe 函数传递了 string、int 和 struct。该程序打印:1
2
3Type = string, value = Hello World
Type = int, value = 55
Type = struct { name string }, value = {Naveen R}
类型断言
类型断言用于提取接口的底层值(Underlying Value)。
在语法 i.(T) 中,接口 i 的具体类型是 T,该语法用于获得接口的底层值。
一段代码胜过千言。下面编写个关于类型断言的程序。
1 | package main |
在第 12 行,s 的具体类型是 int。在第 8 行,我们使用了语法 i.(int) 来提取 i 的底层 int 值。该程序会打印 56。
在上面程序中,如果具体类型不是 int,会发生什么呢?接下来看看。
1 | package main |
在上面程序中,我们把具体类型为 string 的 s 传递给了 assert 函数,试图从它提取出 int 值。该程序会报错:panic: interface conversion: interface {} is string, not int.。
要解决该问题,我们可以使用以下语法:
1 | v, ok := i.(T) |
如果 i 的具体类型是 T,那么 v 赋值为 i 的底层值,而 ok 赋值为 true。
如果 i 的具体类型不是 T,那么 ok 赋值为 false,v 赋值为 T 类型的零值,此时程序不会报错。
1 | package main |
当给 assert 函数传递 Steven Paul 时,由于 i 的具体类型不是 int,ok 赋值为 false,而 v 赋值为 0(int 的零值)。该程序打印:
1 | 56 true |
类型选择(Type Switch)
类型选择用于将接口的具体类型与很多 case 语句所指定的类型进行比较。它与一般的 switch 语句类似。唯一的区别在于类型选择指定的是类型,而一般的 switch 指定的是值。
类型选择的语法类似于类型断言。类型断言的语法是 i.(T),而对于类型选择,类型 T 由关键字 type 代替。下面看看程序是如何工作的。
1 | package main |
在上述程序的第 8 行,switch i.(type) 表示一个类型选择。每个 case 语句都把 i 的具体类型和一个指定类型进行了比较。如果 case 匹配成功,会打印出相应的语句。该程序输出:
1 | I am a string and my value is Naveen |
第 20 行中的 89.98 的类型是 float64,没有在 case 上匹配成功,因此最后一行打印了 Unknown type。
还可以将一个类型和接口相比较。如果一个类型实现了接口,那么该类型与其实现的接口就可以互相比较。
为了阐明这一点,下面写一个程序。
1 | package main |
在上面程序中,结构体 Person 实现了 Describer 接口。在第 19 行的 case 语句中,v 与接口类型 Describer 进行了比较。p 实现了 Describer,因此满足了该 case 语句,于是当程序运行到第 32 行的 findType(p) 时,程序调用了 Describe() 方法。
该程序输出:
1 | unknown type |